Towards a shared mental model of training for XC skiing

Stephen Seiler PhD
Dept. of Sports Science \& Physical Education
University of Agder, Kristiansand, Norway

Mental models

- Understood as a set of organized knowledge structures created by the mind to describe, reason, explain, and anticipate concrete reality to achieve an end goal
- Mental models are working models of the world that humans create to achieve an understanding of their environment
- Refers to the quantity and quality of cognitive, affective, and behavioral knowledge types:
- What
- Why
- Where
- When
- How

Slide courtesy of Gaute Schei, Dept of Sports Science and Physical education, University of Agder

Four Mental models (or one big one)

1. The trainable endurance components and their adaptive time course
2. Maslovian Prioritization: First things First......\& Health First
3. Training Intensity Zones as guardrails to help optimize signal/stress balance
4. Triangulation in training monitoring

1. What are the trainable endurance components?

(And what is the timeline for these adaptations?)

What type of race is this?

The body cannot use more oxygen than the heart can deliver

$\mathrm{VO}_{2} \max \mathrm{vs}$
VO_{2} peak: Role of muscle mass activation

Maximal oxygen uptake during exercise with various combinations of arm and leg work

U. BERGH, I.-L. KANSTRUP, AND B. EKBLOM

Department of Physiology, Gymnastik- och Idrottshögskolan, Stockholm, Sweden

table 2. Maximal values for oxygen uptake, heart rate, pulmonary ventilation, ventilatory quotient, blood lactate, and work time during different types of exercise

	Running	Arm Cycling	Leg Cycling		Arm + Leg Work Proportion of arm work		
				10\%	20\%	30\%	40\%
$\dot{\mathrm{V}}_{\mathrm{O}_{2} \text { max }}, 1 \cdot$ min $^{-1}$				$4.32 \ddagger$	4.34	4.27	4.01*
	4.44	3.01	4.12	± 0.56	± 0.50	± 0.46	± 0.53
\% of $\mathrm{V}^{\mathrm{O}_{2} \text { max }}$, running				97.4	98.1	96.6	90.6
	100\%	70\%	93\%	± 3.6	± 3.6	± 5.4	± 6.9
Heart rate, beats \cdot min $^{-1}$	193	176	189	$188 \dagger$	$189 \dagger$	187*	185*
				± 8.8	± 8.3	± 9.7	± 9.7

~210-220sec work duration
~210-220sec work duration

Muscle mass activation > cardiac pumping capacity

Cardiac Pumping Capacity > upper body muscle mass activationUnless....

What fraction, or percentage, of their Maximal Oxygen Consumption can the athlete utilize "for a relatively long time*" without having to slow down?
*(~30 minutes to ~2 hours)

Hofmann \& Tschakert, Front. Physiol., 24 May 2017 https://doi.org/10.3389/fphys.2017.00337

Hofmann \& Tschakert, Front. Physiol., 24 May 2017
https://doi.org/10.3389/fphys.2017.00337

SESSION TYPE	HR (\%MAX)	VO_{2} (\%MAX)	BLOOD LACTATE (mM)	RPE (BORG 6- 20)	SESSION RPE (FOSTER 1- 10)
BELOW VT1 60MIN	68 ± 7	61 ± 0.7	1.0 ± 0.1	9.7 ± 0.4	2 ± 0
BELOW VT1 120 MIN	68 ± 7	Not measured, ran outdoors	1.0 ± 0.1	10 ± 0.4	2.4 ± 1.1
THRESHOLD	88 ± 2	84 ± 0.7	2.7 ± 0.4	13.9 ± 0.5	5 ± 0.6
ABOVE VT2 (6 X 3MIN)	95 ± 3	96 ± 0.7	7.1 ± 0.7	17.2 ± 0.8	8.1 ± 1

Figure 3. PR 's VO_{2} max Values, 1992-2003

ThePhysiology of the World Record Holder for the Women's Marathon

No change in $\mathrm{VO}_{2} \max$

Paula Radcliffe, 2:15:25 WR Marathon

Jones, AM. Int. J. Sports Science \& Coaching 1(2), 2006.

MORPHOLOGICAL COMPONENTS

Different time courses to peak adaptation.......

2. Maslovian Prioritization:

First things First and
Staying healthy is Priority One

Strength of Evidence/Effect

Where is

Strength Training?!

Potentially decisive if you have one isolated competition... and everything else is done right
Taper
Race/Pace
Potentially decisive if everything else is done right Training

Training Stimuli Enhancement

Potentially important effects
(i.e. Altitude, Heat, Energy availability)
but individual and condition specific
Sports-specific and
micro-periodization schemes
Not established, but likely modest

Training VOL, HIT, and overall TID likely have interactive effects

Well established

High Intensity Training (HIT) Well established

Total Frequency/ Volume of training (VOL)

Losnegard, T., Mikkelsen, K. L., Rønnestad, B. R., Hallén, J., Rud, B., Raastad, T. (2011). The effect of heavy strength training on muscle mass and physical performance in elite cross country skiers. Scandinavian Journal of Medicine \& Science in Sports, 21, 389-401.

Bente Skari

5 time World Champion, O-gold, 42 WC victories

Sandbakk Ø, Holmberg HC, Leirdal S,

 Ettema G. The Physiology of World Class Sprint Skiers*. Scand J Med Sci Sports. 2011 Dec;21(6):e9-16| | World-class $(\boldsymbol{n}=\mathbf{8})$ | | National level $(\boldsymbol{n}=\mathbf{8})$ | |
| :--- | :---: | :---: | :---: | :---: |
| | Training hours | \% of total training | Training hours | \% of total training |
| LIT | $340 \pm 23^{* *}$ | 76.4 ± 4.6 | 254 ± 94 | 73.1 ± 12.0 |
| MIT | $29 \pm 12^{* *}$ | $6.5 \pm 2.2^{*}$ | 14 ± 6 | 4.4 ± 2.4 |
| HIT | 19 ± 3 | 4.4 ± 0.8 | 19 ± 8 | 5.6 ± 2.1 |
| Speed | $16 \pm 7^{* *}$ | $3.7 \pm 1.5^{*}$ | 7 ± 3 | 2.3 ± 1.2 |
| Strength | 39 ± 14 | 8.8 ± 2.9 | 31 ± 14 | 9.4 ± 3.7 |
| Total | $445 \pm 27^{* *}$ | 100 | 341 ± 90 | 100 |

Main differences in training were that the world class skiers trained ~30\% more volume (hours), and performed more specific speed work.

3. Training Intensity Zones are Signal/Stress balancing tools

Seiler \& Kjerland. Quantifying training distribution in elite endurance athletes: is there evidence of an optimal distribution? Scand. J. Med. Sci. Sports. 16, 49-56, 2006.

Endurance training is an Optimization problem!

Adaptive Stimulus

- Bone-tendon-muscle damage at cellular level
- Inflammation
- Repetitive sympathetic stress
- Immuno-suppression
- Psychological fatigue
(Adjusting training characteristics)

${ }^{\sim} 80 \%$ LIT sessions is very consistently observed In studies of high performing endurance athletes.....BUT is the remaining 20\%

Pyramidal or Polarized?

The training intensity distribution among well-trained and elite endurance athletes

Pyramidal or Polarized?

90
80

They share ~80\% LIT sessions in common
"Threshold" sessions are high stress sessions!

They are both used at different times of the season by many athletes

Polarized power/pace will often give Pyramidal HR distribution!

$$
80 \% / 20 \%
$$

MON TUE WED THU FRI SAT SUN

MON TUE WED THU FRI SAT SUN

Screenshot from video by Dylan Johnsen: https://www.youtube.com/watch?v=oLsBXW3mTDI\&t=603s

Screenshot from video by Dylan Johnsen: https://www.youtube.com/watch?v=oLsBXW3mTDI\&t=603s

Monotone stress load, stagnation and overreaching are likely

2 "training stress zones" that are dynamic

Low Stress - Short Recovery

High Stress - Longer Recovery

~80\% of training sessions should land in this bucket

About 20\% of sessions should be spread between these $\mathbf{2}$ buckets

Career Training Intensity Distribution (14y, 8587 h)

Athlete: Bente Skari, NOR
Summary figure created based on training diary analysis by Espen Tønnessen, OLT NOR

The Training Characteristics of the World's Most Successful Female Cross-Country Skier
T. Guro S. Solli ${ }^{1}, \quad$ Espen Tønnessen ${ }^{2}$ and \quad Øyvind Sandbakk ${ }^{3}$

Department of Sports Science and Physical Education, Nord University, Bodø, Norway
The Norwegian Olympic Federation, Oslo, Norway
Department of Neuromedicine and Movement Science, Centre for Elite Sports Research. Norwegian University of Science and Technology. Trondheim. Norway

4. Triangulation also helps us know where we are in training

C而UiA

6	No exertion
7	
8	
9	
10	Light
11	
12	Somewhat hard
13	
14	Hard (heavy)
15	
16	Very hard
17	
18	Maximal exertion
19	
20	

Anatomy of a hard threshold session: $5 \times 10 \mathrm{~min}, 3$ min active recovery

RED Line $=H R$

BLACK line = Breathing Frequency

Data analyzed using Endura.fit John Peters \& Stephen Seiler

$3 \times 15 \mathrm{~min} \times 30: 30 \mathrm{~s}$

Internal "Cost" Increases with duration in all types of workouts:
External Work quite slowly <LT1, much faster >LT1 and very fast >LT2

Perceptual measures and Effort Matching

6	Total rest
7	Very, very light
8	
9	Very light
10	
11	Fairly light
12	
13	Somewhat hard
14	
15	Hard
16	
17	
18	
19	
20	MAXIMAL effort

B.

Effort \approx Exertion magnitude x Exertion duration

"Exertion", as measured by RPE seems to be intensity oriented. So, low intensity (LIT) and Threshold sessions will not drive a maximal exertion, even when highly fatigued. The body goes "empty" and prevents maximal exertion. However, the "effort "in these sessions can be maximal, but the perceptions are different (empty legs versus being "full of lactic acid").

How Does Interval-Training Prescription Affect Physiological and Perceptual Responses?

GII UiA

ACCUMULATED side-effects

(24h+ post training)

- Mood state change
- Decreased Readiness to Train
- Large HR/load Shift (up or down)
- Decreased Peak Blood La-
- Peak 6s power/CMJ decline
- Decreased resting HRV
- Decreased testosterone
response
- Decreased cortisol response

ACUTE Stress
 Responses

NEUTRAL: Different combinations of intensity x duration can give same load!

- RPE/HR/Ventilation shift at same power/pace
- Efficiency deterioration (technique collapse)
- Greater pace variation
- Increased cortisol release (saliva or blood)
- Increased/altered muscle activation at same power or pace

Some extra figures for Q\&A

Ingrid Kristiansen
5 World Records
World Champion
Data from Espen Tønnesen
Olympiatoppen with permission
Preparation

1.Time-in-Zone (underreports true high-intensity time)
2. Modified TIZ (adjusts for this)
3. Session Goal (assigns each session to an intensity category)

Autonomic recovery from identical Interval sessions in highly trained versus trained endurance subjects

Seiler, Haugen, and Kuffel. Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med. Sci. Sports Exerc. 39
(8):1366-1373, 2007.

Table 1 Characteristics of the Subject

	Men		Women	
Variables	Running ($\mathbf{n = 4 4)}$	Cycling ($\mathbf{n = 4 7)}$	Running ($\mathbf{n}=\mathbf{3 2)}$	$\mathbf{C y c l i n g ~ (~} \mathbf{n}=\mathbf{3 7})$
Age, y	$23(4)$	$20(3)$	$21(2)$	$25(6)$
Weight, kg	$74(7)$	$74(7)$	$59(4)$	$60(6)$
Height, cm	$181(6)$	$183(5)$	$168(4)$	$67(6)$
VO_{2} max, $\mathrm{mL} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$	$77.1(5.4)$	$77.7(6.0)$	$64.9(3.9)$	$63.1(5.6)$
$\mathrm{HR}_{\text {peak }}$, beats $\cdot \mathrm{min}^{-1}$	$193(6)$	$195(7)$	$193(7)$	$191(9)$

Abbreviations: $\mathrm{HR}_{\text {peak }}$, peak heart rate during the maximal oxygen uptake test; VO_{2} max, maximal oxygen uptake. Note: Data are presented as mean (SD).

Table 2 Reported RPE and Associated Physiological Variables

RPE (6-20)	Description	HR, \% of HR ${ }_{\text {peak }}$	$\mathrm{VO}_{2}, \%$ of VO_{2} max	[La^{-}], mmol $\cdot \mathrm{L}^{-1}$
6		-	-	-
7	Very, very light	-	-	-
8		68 (7)	53 (9)	1.1 (0.3)
9	Very light	71 (7)	56 (8)	1.1 (0.3)
10		73 (6)	58 (9)	1.1 (0.3)
11	Fairly light	74 (7)	61 (7)	1.1 (0.3)
12		78 (6)	66 (8)	1.4 (0.5)
13	Somewhat hard	81 (6)	70 (7)	1.7 (0.6)
14		86 (6)	75 (8)	2.5 (0.9)
15	Hard	88 (5)	80 (7)	3.3 (1.2)
16		91 (5)	84 (6)	4.2 (1.3)
17	Very hard	93 (5)	86 (4)	4.5 (1.3)
18		-	-	-
19	Very, very hard	-	-	-
20		-	-	-

Losnegard, T. J., Skarli, S., Hansen, J., Roterud, S., Svendsen, I. S., Rønnestad, B., Paulsen, G. (2021). Is Rating of Perceived Exertion a Valuable Tool for Monitoring Exercise Intensity During SteadyState Conditions in Elite Endurance Athletes? International Journal of Sports Physiology and Performance (IJSPP), 16(11), 1589-1595.

Slides 60-62 are the same workout and show how HR and power can give different pictures of the nature of a training Duration (mins) by \%Max HR session (Polarized vs Pyramidal

Duration (mins) by \%6min Power

